Framed Hitchin Pairs

نویسنده

  • ALEXANDER H.W. SCHMITT
چکیده

We provide a construction of the moduli spaces of framed Hitchin pairs and their master spaces. These objects have come to interest as algebraic versions of solutions of certain coupled vortex equations. Our method unifies and generalizes constructions of several similar moduli spaces. 2000 Mathematics Subject Classification: 14D20, 14D22, 14L30.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moduli spaces of framed instanton sheaves on pojective spaces

We introduce a generalization of Atiyah-Drinfeld-Hitchin-Manin linear algebraic data and a generalization of Atiyah-Drinfeld-Hitchin-Manin equation, which are subsequently used to construct all framed instanton bundles on complex projective spaces. Using geometric invariant theory, we prove that the moduli spaces of framed instanton sheaves is a quiasiprojective variety. We also provided a link...

متن کامل

Moduli spaces of framed instanton sheaves on projective spaces

We introduce a generalization of the Atiyah-Drinfeld-Hitchin-Manin linear algebraic data and a generalization of Atiyah-Drinfeld-Hitchin-Manin equation, which are subsequently used to construct all framed instanton bundles on complex projective spaces. Using geometric invariant theory, we prove that the moduli spaces of framed instanton sheaves is a quasiprojective variety. We also provide a li...

متن کامل

6 Flows of Calogero - Moser Systems

The Calogero-Moser (or CM) particle system [Ca1, Ca2] and its generalizations appear, in a variety of ways, in integrable systems, nonlinear PDE, representation theory, and string theory. Moreover, the partially completed CM systems—in which dynamics of particles are continued through collisions—have been identified as meromorphic Hitchin systems (see, for example, [BBT, DM, GN, HM, HN, Kr2, Kr...

متن کامل

0 D ec 1 99 9 Calogero - Moser systems and Hitchin systems

We exhibit the elliptic Calogero-Moser system as a Hitchin system of G-principal Higgs pairs. The group G, though naturally associated to any root system, is not semi-simple. We then interpret the Lax pairs with spectral parameter of [dP1] and [BSC1] in terms of equivariant embeddings of the Hitchin system of G into that of GL(N).

متن کامل

The universal Kobayashi-Hitchin correspondence on Hermitian manifolds

We prove a very general Kobayashi-Hitchin correspondence on arbitrary compact Hermitian manifolds. This correspondence refers to moduli spaces of ”universal holomorphic oriented pairs”. Most of the classical moduli problems in complex geometry (e. g. holomorphic bundles with reductive structure groups, holomorphic pairs, holomorphic Higgs pairs, Witten triples, arbitrary quiver moduli problems)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008